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Human frontocentral event-related potentials (FC-ERPs) are ubiquitous neural correlates of cognition and control, but their
generating multiscale mechanisms remain mostly unknown. We used the Human Neocortical Neurosolver’s biophysical model of
a canonical neocortical circuit under exogenous thalamic and cortical drive to simulate the cell and circuit mechanisms underpin-
ning the P2, N2, and P3 features of the FC-ERP observed after Stop-Signals in the Stop-Signal task (SST; N =234 humans, 137
female). We demonstrate that a sequence of simulated external thalamocortical and corticocortical drives can produce the FC-
ERP, similar to what has been shown for primary sensory cortices. We used this model of the FC-ERP to examine likely circuit-mech-
anisms underlying FC-ERP features that distinguish between successful and failed action-stopping. We also tested their adherence to
the predictions of the horse-race model of the SST, with specific hypotheses motivated by theoretical links between the P3 and Stop
process. These simulations revealed that a difference in P3 onset between successful and failed Stops is most likely due to a later
arrival of thalamocortical drive in failed Stops, rather than, for example, a difference in the effective strength of the input. In con-
trast, the same model predicted that early thalamocortical drives underpinning the P2 and N2 differed in both strength and timing
across stopping accuracy conditions. Overall, this model generates novel testable predictions of the thalamocortical dynamics under-
lying FC-ERP generation during action-stopping. Moreover, it provides a detailed cellular and circuit-level interpretation that sup-
ports links between these macroscale signatures and predictions of the behavioral race model.
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The frontocentral event-related potential (FC-ERP) is an easily measurable neural correlate of cognition and control.
However, the cortical dynamics that produce this signature in humans are complex, limiting the ability of researchers to
make predictions about its underlying mechanisms. In this study, we used the biophysical model included in the open-source
Human Neocortical Neurosolver software to simulate and evaluate the likely cellular and circuit mechanisms that underlie the
FC-ERP in the Stop-Signal task. We modeled mechanisms of the FC-ERP during successful and unsuccessful stopping, gen-
erating testable predictions regarding Stop-associated computations in the human frontal cortex. Moreover, the resulting
model parameters provide a starting point for simulating mechanisms of the FC-ERP and other frontal scalp EEG signatures
in other task conditions and contexts.
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infrequent “Stop-Signal” on a subset of trials (Logan and Cowan,
1984a; Logan, 1994; Verbruggen and Logan, 2009). The Stop-
Signal-aligned FC-ERP contains a complex of peaks within
approximately 300 ms (e.g., the P2, N2, and P3) associated with
inhibitory performance. A large, positive-going P3 is observed
in Stop but not Go trials (de Jong et al., 1990; Kok et al., 2004;
Enriquez-Geppert et al., 2010; Huster et al., 2013), onsets earlier
in successful than failed Stop trials (Wessel and Aron, 2015),
and has an onset latency that correlates with Stop-Signal reaction
time (SSRT, an estimation of how long stopping requires; Wessel
and Aron, 2015; Huster et al., 2020). The preceding, negative-
going N2’s onset and amplitude also vary with stopping success
(Ramautar et al., 2004; Huster et al., 2010, 2011, 2013), although
the direction of these effects is mixed (cf., Dimoska et al., 2006;
Senderecka et al., 2012; Senderecka, 2016).

Despite theories associating FC-ERP waveform changes with
stopping, the detailed multiscale neural mechanisms generating
the FC-ERP and its condition-dependent changes have not
been delineated. In this study, we used Human Neocortical
Neurosolver (HNN), whose foundation is a biophysical model
of the canonical neocortical column under thalamocortical and
corticocortical drive, to predict multiscale cell and circuit dynam-
ics producing the FC-ERP in the SST. We specifically tested the-
orized links between these neural mechanisms and predictions of
the well-known “horse-race” model, a computational model of
behavior in the SST. This model assumes the outcome of Stop tri-
als is determined by the winner of a race between prokinetic Go
and antikinetic Stop processes (Logan and Cowan, 1984a,b).
According to the logic of this horse-race model, any neural signa-
ture of the Stop process that starts earlier should lead to more
successful stopping. Consequently, the onset of the Stop-
Signal-aligned frontocentral P3 has been proposed to index the
timing of this Stop process, since it onsets earlier on successful
than failed Stop trials (Wessel and Aron, 2015). However,
although a race model conceptualization aligns with canonical
characteristics of the grand-average P3, it does not necessarily
follow that underlying neural mechanisms support this interpre-
tation. ERPs are generated by complex, overlapping laminar
dynamics (Jones et al, 2007; Lindén et al., 2011; Reimann
et al., 2013; Jones, 2015; Neymotin et al., 2020). Based on the
averaged FC-ERP alone, it is impossible to know whether the
observed change in onset timing between successful and failed
Stop trials is due to an earlier onset of the underlying neural
mechanism (i.e., those purportedly underlying stopping) or due
to a stronger effective strength of the same mechanism (which
would also lead to an earlier emergence of a significant
FC-ERP feature).

HNN was explicitly designed to simulate the multiscale bio-
physical origin of human M/EEG signals. HNN accounts for
both local circuit activity and exogenous driving influences
from subcortical thalamic and higher-/lower-order cortical areas
(Neymotin et al., 2020). As such, it provides a unique opportunity
to predict whether the likely neural dynamics underlying condi-
tion differences in the FC-ERP support or negate the race model
interpretation of P3. We applied HNN for the first time to signals
from the frontal cortex to model the mechanisms underlying the
FC-ERP during successful and failed Stop trials in the SST.

Materials and Methods

FC-ERPs used to fit HNN models were extracted from an open-source
EEG dataset collected during an SST (https://ost.io/v3a78/). The data col-
lection procedures are described in full by Wessel (2020) and briefly here.
Findings from this dataset have been published previously in whole or in
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part in other investigations that have not included biophysical modeling
(Dutra et al., 2018; Wessel, 2018a; Wessel and Huber, 2019; Dykstra et al.,
2020; Soh and Wessel, 2021; Waller et al., 2021). All code for analyses
specific to this study can be found on GitHub at https:/github.com/
darcywaller/HNN_StopSignal _FCERP.

Participants

Participants were 234 healthy young adults (mean age, 22.7; SEM = 0.43,
137 female, 25 left-handed) who participated in research studies at The
University of Iowa (IRB #201511709). Participants were compensated
for participation monetarily or with course credit.

Behavioral paradigm

All participants performed a computerized SST (on Linux using
Psychtoolbox; Brainard, 1997) during simultaneous scalp EEG recording
(Fig. 2A). Individuals were told to respond to black arrows (Go signals)
appearing on a gray background as quickly as possible by indicating the
direction they pointed, using “q” and “p” keys on a keyboard for “left”
and “right,” respectively. On a third of trials, following a delay, participants
received a second, infrequent Stop-Signal and saw the arrow turn red, cue-
ing them to halt their response if possible. A successful Stop was accom-
plished if participants withheld the response to the Go arrow after the
Stop-Signal. Initial Stop-Signal delay (SSD) was 250 ms and was adjusted
throughout the task (decreased by 50 ms for failed Stops and increased
by 50 ms for successful Stops). Participants were instructed to equally pri-
oritize responding quickly and stopping when possible. Feedback was given
when necessary by researchers during the block breaks to ensure adherence
to task rules. Behavioral performance in this sample is typical of healthy
young adult performance on the SST [mean Go trial reaction time,
534 ms; SEM =6.6; mean failed Stop trial reaction time, 460 ms, SEM =
5.79; Stop accuracy, 0.52; SEM = 0.002; mean Stop-Signal delay, 282 ms;
SEM =7.91; mean Stop-Signal reaction time, 245 ms; SEM = 3.62; failed
Stop RT significantly faster than Go RT; see the Results of Wessel (2020)
for more information].

EEG data collection

EEG data were collected using either the Brain Products actiChamp or
passive MR plus cap. Both caps contained 62 electrodes. The passive
cap was used with two additional electrodes placed on the left canthus
and the orbital bone below the left eye. The Fz and Pz electrodes were
used as ground and reference contacts, respectively. Data were digitized
at a rate of 500 Hz, recording filters were set at a high-pass of 10 s and
low-pass of 1,000 Hz, and impedance was kept below 10 mQ.

Preprocessing

This analysis utilized the already-preprocessed datasets provided in the
OSF upload from Wessel (2020). We described the preprocessing pipe-
line here briefly, but see Wessel (2020) and associated code at https://
osf.io/v3a78/ for complete details. Data were preprocessed using custom
MATLAB code using the EEGLAB toolbox (Delorme and Makeig, 2004).
Once imported into EEGLAB in MATLAB, the data were filtered with a
high-pass FIR filter at 0.3 Hz and a low-pass FIR filter at 30 Hz. The data
were segmented into 1 s epochs and screened for periods in which ampli-
tude or kurtosis exceeded five times the mean. Any segment in which this
threshold was met was considered to contain an artifact and was
removed. Following cleaning, data were rereferenced to the common
average. A temporal infomax ICA decomposition algorithm (Bell and
Sejnowski, 1995) with extension to sub-Gaussian sources (Lee et al.,
1999) was performed, and the resulting component matrix was algorith-
mically screened for components representing eye movement and elec-
trode artifacts using outlier statistics (Dutra et al., 2018; Wessel, 2018a;
Waller et al, 2021). Independent components identified as artifacts
were subtracted from the data.

Identification of independent component contributing to P3 latency
difference in FC-ERP

Prior work on the neural generators of the FC-ERP during the SST impli-
cates generators for the N2/P3 in the medial prefrontal cortex [mPFC;
specifically, encompassing the pre-supplementary motor area (preSMA)
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and midcingulate cortex (MCC); Huster et al., 2011]. Here, we did not
compute an EEG inverse solution because we did not have access to par-
ticipants’ structural MRIs. We chose not to use a template brain for
source reconstruction because source localization of mPFC dipoles is
imprecise in the absence of individual structural scans due to the impacts
of individual variation in cingulate morphology on the N2/P3 complex
(Huster et al., 2014). Rather, we constrained our data in a manner that
maximized our chances of studying activity from frontal medial genera-
tors and allowed us to address a priori hypotheses about the P3.
Specifically, we used ICA to isolate the independent component (IC)
in our data that accounts for the successful versus failed Stop condition
difference in the onset of the P3 in the SST (Wessel, 2018b) and examined
the contribution from this component to time-series voltage at channel
FCz.ICA applied across time yields low-dimensional spatial components
of the data that are predicted to come from independent underlying neu-
ral generators, although this analysis is agnostic to underlying anatomy.
In each subject, we identified the independent component (1) whose
channel weights were maximal at frontocentral electrodes Fz, F1, F2,
FCz, FC1, FC2, Cz, C1, or C2 and (2) whose reconstructed (in channel
space) time-series data related to the P3 onset difference in the all-IC
data most strongly. This second condition was assessed by calculating
the difference between the failed and successful Stop ERP in the time
range of 200-500 ms post-Stop-Signal in both the candidate-IC and
all-IC data and then correlating the two. Once the component with the
correct topography and strongest correlation with P3 onset difference
was identified, we then removed all other ICs from the data and recon-
structed our time-series at each channel using the activation of this single
independent component. This procedure has been used successfully in
previous work to isolate the IC (and assumed underlying independent
neural generator) that accounts for the P3 onset difference (Dutra
et al,, 2018; Wessel and Huber, 2019; Dykstra et al., 2020; Waller et al.,
2021) and was used here with the motivation of isolating the neural gen-
erator of activity associated most closely with the Stop process. It is worth
noting that although the algorithmic approach targets large-amplitude
condition differences in the P3 time frame, the resulting IC also includes
P2 and N2 features when ERPs are extracted (Fig. 2C).

Event-related potentials

From cleaned data reconstructed using the independent component
described above, we extracted ERPs at electrode FCz (central channel
from the frontocentral ROI in Wessel and Aron, 2015; Skippen et al.,
2020) by epoching the data from 100 ms preceding to 500 ms following
the Stop-Signal for failed and successful Stop trials. In addition, matched
Go trial ERPs were made by identifying Go trials that followed each Stop
trial as closely as possible (and therefore contained the same SSD in the
staircase). These Go trials were epoched around the time of SSD, even

J. Neurosci., May 15, 2024 « 44(20):¢2016232024 - 3

though no Stop-Signal occurred on those trials, yielding a control time
period in which no Stop-related processes should be active. Condition
grand averages were made by averaging over all trials and subjects within
conditions. All ERPs were baseline-corrected with the mean-subtraction
method using a period of 100 ms preceding the Stop-Signal (or the SSD,
in the case of matched Go trials).

Quantifying ERP onsets and peaks

The timing of average P2, N2, and P3 peak amplitudes was determined
for each participant by taking the maximum of the subject-average
ERP in the 100-200 ms post-Stop-Signal time period, the minimum
150-250 ms  post-Stop-Signal, and the maximum during the
whole-ERP window, respectively. N2 peak latency was quantified as
the timing of the same minimum in the subject-average ERP 150-250 ms
post-Stop-Signal. P3 onset latency was quantified as in Wessel and Aron
(2015). For each Stop condition (successful and failed) within subjects, a
pool of single-trial ERPs from all Stop trials was tested against the pool of
matched Go trials for that Stop success condition using bootstrapped
Monte-Carlo t tests with 1,000 permutations. The resulting vector of
p-values across time points was corrected for multiple comparisons using
the Benjamini-Hochberg familywise error rate correction (Benjamini
etal,, 2006) to p < 0.05. Taking the corrected p-value vector, we identified
the first time point prior to the P3 peak, which contained a significant
difference between Stop and Go trial amplitudes to identify the first
time point at which the ERPs for Stop and Go conditions significantly
diverged during the P3’s onset.

Human Neocortical Neurosolver (HNN)

Overview. HNN is a neural modeling software whose foundation is a
biophysically principled neocortical column model under exogenous
thalamocortical and corticocortical synaptic drive (Fig. 1). It is explicitly
designed to simulate the primary current dipoles that generate EEG and
MEG signals based on their biophysical origin from current flow in pyra-
midal neuron dendrites and with enough detail to connect to microcir-
cuit dynamics. A comprehensive description of this model and
empirical support for its components can be found in a study by
Neymotin et al. (2020). The software and tutorials for use are distributed
at https://hnn.brown.edu, and all code is available on GitHub. The mod-
els in this investigation were run with the 1.3.2 release of HNN GUI in
combination with the updated Layer 5 (L5) calcium dynamics file devel-
oped by Kohl et al. (2022).

Neocortical column model. The template neocortical column model
distributed with HNN consists of individual cells arranged in a laminar
structure that comprises generalizable principles of a neocortical column.
The network contains multi-compartment pyramidal cells and
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Diagram of the Human Neocortical Neurosolver (HNN) model of a canonical neocortical column. Activity in a laminar network of excitatory pyramidal and inhibitory basket cells is

driven by the delivery of spikes or trains of spikes in the form of a Proximal drive to an abstracted Layer 4 or Distal drive to Layers 2/3. See the Materials and Methods and Extended Data Figure 1-1
for considerations regarding which model parameters are changed during hypothesis testing and the plausible range of parameter changes.
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inhibitory neurons simulated as point neurons in Layers 2/3 and Layer 5
of the cortex. Layer 4 is not explicitly modeled but assumed to directly
relay feedforward input from the thalamus to cells in the other layers,
effectively contacting the proximal dendrites of the pyramidal neurons
(Fig. 1, Proximal drive). Cells are arranged in an equidistant grid with
a 3:1 pyramidal-interneuron ratio, with the default model size of 100
pyramidal cells in each layer.

HNN’s template neocortical model was originally constructed to
account for signals in primary sensory cortex with biophysical details
based in large part on animal studies, including data from rodents.
How much the fine details of cortical cells across brain areas (Gilman
et al, 2016; Hsu et al, 2017) and species (Beaulieu-Laroche et al.,
2018; Testa-Silva et al., 2022) contribute to macroscale signals is
unknown and requires further investigation. HNN contains a minimal
level of detail to begin to develop and test predictions on the biophysical
mechanisms of source localized MEG/EEG, based on their generation
from cortical pyramidal neurons dendrites embedded in a laminar
cortical structure (detailed further below).

In order to in part establish an HNN model for the medial frontal
cortex, we made several changes to the default values in the local neocor-
tical column model. The literature on receptor concentration within lay-
ers of the medial frontal cortex (e.g., including the midcingulate cortex)
suggests that this area of the cortex differs from other regions in several
ways. In particular, there is an abundance of reciprocal interconnections
in pyramidal cells, resulting in networks that are “hyper-reciprocally
connected” (Wang et al., 2006). There is high NMDA and GABAb bind-
ing across layers and high GABAa binding in Layers 1-3 specifically
(Palomero-Gallagher et al., 2009; Vogt, 2016). These properties are pro-
posed to factor into the high propensity of medial prefrontal neurons for
augmentation and potentiation following transient input (Hempel et al.,
2000). In line with these observations, we made several changes to the
local connectivity of the model underlying HNN: (1) increased NMDA
weights from Layer 2 pyramidal cells to Layer 2 pyramidal cells by
50% and from Layer 5 pyramidal cells to Layer 5 pyramidal cells
by 50%; (2) increased AMPA weights from Layer 2 pyramidal cells to
Layer 2 pyramidal cells by 50%, from Layer 2 pyramidal to Layer 5 pyra-
midal cells by 100%, and from Layer 5 pyramidal cells to Layer 5 pyra-
midal cells by 50%; (3) increased GABAa weights from Layer 2 basket
cells to Layer 2 pyramidal cells by 100%; and (4) increased GABADb
weights from Layer 2 basket cells to Layer 2 pyramidal cells by 100%
and from Layer 5 basket to Layer 5 pyramidal cells by 200%. Note that
although these changes were made based on a review of the literature
cited, an examination of a larger range of network parameters, including
potential differences in single-cell biophysics and morphological proper-
ties, was not performed in this study. All other local network parameters
remained fixed to default values determined by prior work. See Extended
Data Table 3-1 for a parameter comparison table and Extended Data
Figure 3-2 for a demonstration of how these network parameter changes
impact the simulated current dipole. As described below, we adjusted the
parameters representing the exogenous drive to the local network to test
the hypotheses on the generation of the FC-ERP.

Current dipole simulation. The net current dipole is simulated by
summing the intracellular current flow in the pyramidal neuron den-
drites directed parallel to the apical dendrite. A multiplicative scaling fac-
tor is applied to the simulated net current dipole to estimate the number
of cells contributing to the recorded signals, under the assumption that
the recorded macroscale signals reflect nearly synchronous pyramidal
neuron activity across larger populations of cells than those simulated.
Here, we used a scaling factor of 150. Although the scaling factor relates
roughly to the number of neurons producing the dipole, this correlation
is indirect in the context of scalp electrode-level data, and as such we
report the scaled simulation results as scaled units, as discussed further
below. Additionally, raw evoked responses from the model were smoothed
by convolving with a 30 ms Hamming window to account for spatiotem-
poral averaging that occurs when recording the response over a larger het-
erogeneous network in the data as compared with the model, which
includes only 100 pyramidal neurons per layer. See Extended Data
Figure 3-6 for example simulations without the smoothing filter.
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Exogenous drive. There are two types of exogenous excitatory synap-
tic drive that can activate the local network. One drive is designed to rep-
resent feedforward input from the lemniscal/core thalamus that targets
Layer 4 (not explicitly modeled) and is then relayed to the inhibitory neu-
rons and pyramidal neuron basal (i.e., proximal) dendrites in Layers 2/3
and Layer 5. This drive is referred to as Proximal drive in Figure 1.
A fixed 5 ms conduction delay is built into all proximal inputs to L5 to
represent delayed direct thalamic activation of activation to L5 (Jones
et al., 2007; Neymotin et al., 2020). Frontal agranular cortices have sim-
ilar postsynaptic projection patterns from core thalamic nuclei (Barbas
etal., 2013). As such, the proximal drive can be conceptualized as coming
from a granular layer, or in the case of the agranular cortex, directly from
the core thalamus. In practice, the timing of the proximal inputs is tuned
to reproduce the time of empirically recorded peaks. As such, conduction
delays from granular layers and/or thalamus to L2/3 and L5 are implicitly
accounted for. The other drive represents feedback input from either the
higher-order cortex or nonlemniscal thalamus and targets inhibitory
neurons in Layer 2/3 and the distal dendrites of the Layer 2/3 and
Layer 5 pyramidal neurons, referred to as Distal drive in Figure 1. In
practice, users define patterns of presynaptic spike trains representing
exogenous drive from external sources, and these spikes activate excit-
atory synapses in the local network. Stochasticity is built into the timing
of the exogenous drive such that on each simulation “trial” the time of the
input spike (or spikes) is chosen from a Gaussian distribution with a
user-defined mean input time and standard deviation (SD). For each
condition, we simulated 50 trials, in alignment with the average number
of trials yielded for each condition in the empirical data. Individual trials
and averaged data are shown. The exogenous drive together with induced
local network spiking generates current flow up and down the pyramidal
neuron dendrites to produce the net current dipole signal. Although the
exact sources of external drive remain abstract in the model, we discuss
potential sources of these drives based on structural and cytoarchitec-
tural principles in the Discussion.

Using HNN to estimate scalp electrode-level data. As described above,
HNN is designed to simulate current dipole activity from a single source
in the brain. Here, we applied ICA to the scalp electrode-level signals as
described above to estimate the activity from a single neural generator.
This method does not provide information about the anatomical location
of the source, and the units are in millivolts rather than current dipole
units of nanoamperes. By assuming the data are from a single neural gen-
erator, we can directly compare the data to the simulation results of the
single-area HNN model, even though the recorded units are different. To
do so, in each figure, we report the dipole value (here scaled by a factor of
150, as discussed above) as scaled units (su) and compare it with the
post-ICA data in millivolts. All model parameter estimation was based
on comparison across these models and data units.

The primary assumption in comparing HNN current dipole output
with these ICA applied scalp electrode signals is that that signal reflects
activity from a single brain source, here assumed to be in the mPFC. As
such, positive and negative deflections in the scalp electrode-level signal
can be related to the primary current generator coming from intracellular
current flow up and/or down the pyramidal neuron dendrites (see also
Sliva et al., 2018, where HNN was used to study scalp electrode-level
data). The direction of the current at any point in time can thereby be
inferred with source localization techniques when structural scans are
available. However, since we did not have access to such scans, here
we make the assumption that the first positive peak (P2) reflects a feed-
forward input that drives current flow up the pyramidal neuron den-
drites; this assumption is consistent with prior studies examining the
sequence of spiking activity across the cortical layers (Sajad et al,
2022; see further discussion in the Results section). For completeness,
we also examined an alternative model where the first peak reflected a
downward-directed current; this simulation did not provide a good fit
to our data. Further, we examined the possibility that the FC-ERP might
be generated by two different sources in the mPFC rather than a single
source; these results were consistent with the main conclusions from
our study. See the Results section for a detailed examination and discus-
sion of each of these alternatives.
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Process for hypothesis testing and parameter estimation in HNN. HNN
contains a complex dynamical systems model representing a neocortical
column under exogenous driving influences. Due to the large-scale
nature of the model, which has hundreds of parameters, in practice users
leave most of the parameters fixed and adjust only a user-defined subset
of parameters based on hypotheses motivated by prior studies and liter-
ature. The graphical user interface and quantification of the root mean
squared error (RMSE) between simulated and empirical evoked response
waveforms allows users to examine if and how adjustments in these
parameters can account for recorded current dipole source data.

Given the HNN neocortical template model (Fig. 1, Extended Data
Fig. 3-3), all simulations begin by “activating” the network with some
type of assumed exogenous drive that depends on the experimental con-
ditions. For evoked responses, as studied here, it is hypothesized based on
prior studies in sensory cortex that the local network receives a sequence
of initial feedforward thalamocortical input (Proximal 1) followed by a
corticocortical feedback input (Distal 1) and subsequent re-emergent tha-
lamocortical feedforward input (Proximal 2; Jones et al., 2007; Kohl et al.,
2022; and schematic illustrations in Fig. 3Aiv,Biv). These studies were
used to establish the default input pattern distributed with HNN, which
reproduces a tactile-evoked response. Here, we built upon these studies
to propose similar mechanisms of generation for the FC-ERP, under
assumptions that there is a consistent pattern to the sequence and primary
laminar targets of the thalamocortical inputs across cortical regions (see
Discussion; Vogt et al., 1987; Jones, 1998; Barbas, 2015). Moreover, prior
work has demonstrated that excitatory and inhibitory cells in Layers 2/3
and Layer 5 of the primate prefrontal cortex spike across early and late
windows following task-related events in the Stop-Signal task (Sajad
et al.,, 2022), in alignment with this default sequence of inputs. Given
this default sequence, we estimate the number, timing, and maximal con-
ductance of these drives to best account for the recorded data. Initial and
several alternative hypotheses on the parameters of these drives are tested
to identify configurations that reproduce the best fit to data (i.e., smallest
RMSE). The best fit model provides targeted predictions on the multiscale
mechanisms creating the current dipole source signal that can guide fur-
ther follow-up testing with invasive recordings or other imaging modal-
ities (Sherman et al., 2016; Bonaiuto et al., 2021).

The process for parameter estimation begins by starting with the
hypothesized sequence of drives, using the drive parameters distributed
with the software, and manually hand-tuning the parameters defining
the timing and strength of these drives to get an initial close representation
of the current dipole waveform, or, small RMSE between the empirical cur-
rent dipole and simulated trial-mean current dipole. Once an initial close
representation of the data is found, automated parameter estimation algo-
rithms distributed with the software that leverages the COBYLA algorithm
(Powell, 1994) can be used to estimate parameters (within a defined range;
here considered to be no more than 300% for synaptic weight changes to
avoid biologically implausible changes) that produce the smallest RMSE
between the simulated and recorded data (i.e., the “best fit” to the data).
This 300% change in synaptic weights represents a “saturation” point after
which few changes are seen in the simulated dipole or cell spiking. See
Extended Data Figure 1-1 for an example of this saturation effect. The
300% bound was set in the algorithmic parameter optimization procedure.
Several runs of algorithmic optimization were conducted when fitting the
default HNN parameters to the successful Stop data and the successful Stop
model parameters to failed Stop data. Following algorithmic fitting, we
manually tested whether synaptic changes made during optimization
were necessary to improve model fit and eliminated changes that did not
improve the fit of the average dipole to waveform characteristics. The pre-
tuned HNN model and the described process for hypothesis testing and
parameter estimation have been successfully applied in several prior studies
of sensory evoked responses (Jones et al., 2007, 2009; Sliva et al., 2018;
Thorpe et al., 2021; Kohl et al,, 2022; Law et al., 2022). This study is the
first to apply this process to study evoked responses from the frontal cortex.

Horse-race model hypotheses and implications for neural signatures
of the Stop process

As briefly discussed in the Introduction, theorized links between inhibitory
processes and neural signatures such as the FC-ERP in the SST have been
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motivated in large part by assumptions and predictions of the horse-race
model of SST behavior (Logan and Cowan, 1984a; Verbruggen and Logan,
2009). This model assumes that the outcome of a given stop trial is deter-
mined by the winner of a race between an underlying Go and Stop process,
which begins following their respective eliciting stimuli. Although the Go
process begins earlier, it is slightly slower than the stop process. The orig-
inal iteration of this model (Logan and Cowan, 1984a) examined varia-
tions in the Go process speed (i.e., length or RT) assuming invariant
Stop process speed, implying that whether or not a Stop was successful
relied heavily on SSD. However, this is not reflected in neural dynamics,
which indicate both the Stop and Go timing matters when determining
the success of stopping (Schmidt et al, 2013). Critically, historic and
more current iterations of the horse-race model assume that the success
of stopping is not determined by the strength of the Stop process but rather
its timing relative to Go. Given the variance in the speed of the Go process,
an earlier start for the Stop process is advantageous and more likely to
result in a successful Stop. These predictions parallel the characteristics
of the FC-ERP’s P3 deflection observed during successful and failed
Stops: the amplitude of the P3 does not vary significantly by stopping accu-
racy but onsets significantly earlier in successful versus failed Stops.

Results

P3 onset occurred earlier in successful compared with failed
Stops in a Stop-Signal task

Participants performed an SST in which Stop-Signals (red
arrows) were presented following the Go signal on one-third of
trials. Grand-average ERPs (Fig. 2) were calculated at electrode
FCz, time-locked to the Stop-Signal for Stop trials or to the cur-
rent adaptive Stop-Signal delay set for the responding hand for
Go trials. Consistent with prior studies (de Jong et al., 1990;
Kok et al., 2004; Enriquez-Geppert et al., 2010; Wessel and
Aron, 2015), the FC-ERP observed during Stop trials had several
prominent waveform features: (1) the P2, an early positive-going
deflection that occurred approximately 150 ms after the Stop—
Signal, (2) the N2, a negative-going deflection that occurred
approximately 200 ms after the Stop-Signal, and (3) the P3, a
very large and sustained positive-going deflection that peaked
at approximately 300 ms following the Stop-Signal (Fig. 2C).
A prominent P3 deflection was visible on Stop but not Go trials
(Fig. 2C, second positive deflection). The P3’s onset occurred
significantly earlier in successful compared with failed Stop trials
(t233y=—4.94, p <0.0001, d = 0.29; see Fig. 2B for a diagram of P3
onset calculation). The amplitude of the P3 did not differ between
conditions (f;33) = 0.84, p = 0.40, d = 0.02). In addition, the P2 peak
amplitude was larger on failed Stop trials than on successful Stop
trials (#233y=—8.53, p<0.0001, d=0.44; Fig. 2C, first positive
deflection), while the N2 peak amplitude was not significantly
different between conditions (t33=—1.68, p=0.09, d=0.07;
Fig. 2C, first negative deflection). However, N2 peak latency
was significantly earlier in successful Stops than in failed Stops
(t233y=—5.09, p<0.0001, d=0.34; Fig. 2C, first negative deflec-
tion). The presence of the N2 and P3 peaks and their relation to
the success of Stop trials here replicated prior work. Compared
to the N2/P3 complex, the P2 is not typically theorized to relate
to the activity of the Stop process itself per se but represents a
canonical feature of the FC-ERP that impacts preceding network
dynamics and was therefore modeled alongside the N2 and P3
features in our HNN models (see the next section).

HNN predicted the Stop-Signal FC-ERP could be generated
by a sequence of exogenous proximal and distal
thalamocortical drives

The main goal of this study was to use HNN to simulate the
thalamocortical and corticocortical mechanisms generating
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Figure 2.

SS max: 320ms

The Stop—Signal task (SST) and Stop-Signal—locked FC-ERPs. 4, Participants performed a visual SST while EEG was recorded. FC-ERPs were extracted from electrode FCz. B, P3 onset

was calculated using the procedure described by Wessel and Aron (2015), in which permutation testing was applied within subjects to identify the time point when the Stop trial ERPs sign-
ificantly deflected from Go trial ERPs. C, Grand-average Stop-Signal—locked FC-ERPs in our sample. The onset and peak latency of the P3 and peak latency of the N2 were earlier in successful

compared with failed Stops.

differences in the FC-ERP between successful and failed Stop tri-
als and specifically to evaluate whether predicted mechanisms of
P3 onset latency differences are consistent with race model-
derived assumptions of an earlier Stop process onset in successful
Stops. To begin, we modeled the mechanisms by which the
FC-ERP could be generated, focusing first on recapitulating the
key features of the Stop-Signal-locked FC-ERP observed during
successful Stop trials: namely, the polarity and timing of the P2,
N2, and P3 peaks. For more logic behind hypothesis testing with
HNN and a discussion of how this was accomplished procedur-
ally, we refer the reader to the Materials and Methods.

We began with the HNN default evoked response parame-
ters distributed with the software that defines a sequence of
thalamocortical and corticocortical feedforward and feedback
input to the local network through Proximal and Distal
projection pathways (Fig. 3Aiv). We first hand-tuned the
mean onset latency and scaling factor (see Materials and
Methods) of these inputs to produce an initial fit to the
FC-ERP features. Additionally, while the HNN default model
assumes one incoming spike on each trial for the proximal
drives, we found that two incoming spikes were needed to
reproduce the long, sustained P3 deflection of the FC-ERP
(Extended Data Fig. 3-3). Once initial agreement to the ERP
shape was found via hand-tuning, we conducted algorithmic
optimization of a subset of parameters to minimize the RMSE
between the model output and recorded data. The parameters
defining the exogenous thalamocortical and corticocortical
drives were targeted for optimization and included (1) the timing
and standard deviation across trials of the driving spikes defining
each input to the model and (2) the synaptic weights (i.e., maximal
conductance) of AMPA and NMDA receptors on the target pyra-
midal and basket cells for each input, while all other parameters
in the model (i.e., local network parameters, etc.) remained set to
default values. The adjusted parameters and the degree to which
they were changed from the HNN ERP default parameters to
produce the FC-ERP in successful Stop trials (as measured by a
small RMSE, Fig. 3Aiii) are reported in Extended Data Table 3-
4. Of note, remarkably few changes needed to be made to
HNN default parameters to fit the FC-ERP, suggesting ERPs
from the frontal cortex are underpinned by sequential external
thalamocortical drives that are very similar (albeit on a different
timescale) to those predicted to produce evoked responses in sen-
sory cortex (including somatosensory and auditory cortex; Jones
et al., 2007; Kohl et al., 2022).

The optimized HNN model predicted that an initial thalamo-
cortical (Proximal 1) drive at 115 ms, a corticocortical (Distal 1)
drive at 190 ms, and a re-emergent thalamocortical (Proximal 2)
drive at 306 ms led to the FC-ERP observed following Stop—
Signals during successful Stop trials (RMSE = 0.41; Fig. 3A). An
alternate initial model with a distal-proximal-distal drive
sequence produced deflections that were too peaked to fit the
positive-going features of empirical FC-ERPs even after optimi-
zation of model parameters (Extended Data Fig. 3-5).

To establish an understanding of how the described
sequence of drive creates the final successful Stop FC-ERP
(Fig. 3A), we here review a few key model concepts detailed
in prior studies (Neymotin et al., 2020; see also Materials and
Methods). Synaptic excitation via proximal and/or distal drive
pushes current away from the location of the synapse, while
inhibition pulls current toward the location of the synapse.
Backpropagation of action potentials creates an upward current
flow and dendritic calcium spikes generate a downward current
flow (e.g., Law et al., 2022). As such, in the simulation shown,
the initial proximal drive combined with backpropagation of
pyramidal neuron spiking activity created an upward current
flow and a positive peak (P2), while the subsequent distal drive
and strong synchronous somatic inhibition created a downward
current flow and a negative peak (N2). The second proximal
drive generated a subsequent bout of upward current to create
the positive P3 peak.

A spiking histogram of each cell in the network is shown for
an example trial in Figure 3Aii. The inlaid box in the average
dipole plot (Fig. 3Aiii) displays the contribution to the net cur-
rent dipole from each Layer of the model (see also Extended
Data Fig. 3-6 for unsmoothed results). Layer 5 contributed
more to the averaged dipole because the dendrites of pyramidal
cells in this layer of the model were longer, resulting in a greater
contribution to the net current flow.

HNN predicted that proximal drive associated with P3 onset
occurred earlier in successful Stops compared with failed
Stops, in support of race model predictions

We next tested the race model-derived hypothesis that the differ-
ence in P3 onset during successful Stops could be accounted for
by Proximal 2 drive that arrives earlier (i.e., earlier mean onset
time of drive to cortex) but is not effectively stronger (i.e.,
increases in excitatory synaptic weights) than in failed Stops.
The process for fitting the HNN model to the failed Stop
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Optimized HNN models for the successful Stop (A) and failed Stop FC-ERP (B). i, All-trial histograms of thalamocortical and corticocortical drives delivered to the modeled column.

i, Simulated spikes from cell units of the model during one example trial. iii, The average model dipole activity and averaged dipoles in each model layer (the thin gray lines indicate single-trial
dipole activity, and the thick lines indicate the all-trial average). Empirical ERPs are plotted in units of millivolts (mV) and the model dipoles in scaled units (su). iv, Depiction of which drive
parameters in the model were optimized from a previous simulation. See Extended Data Table 3-1 for changes in local network values from the HNN defaults and Extended Data Figure 3-2 for
how this network compares with the default when approximating the successful Stop FC-ERP. Extended Data Figure 3-3 displays the process of hand-scaling and initial tuning of the model to
recapitulate the successful Stop FC-ERP, and Extended Data Table 3-4 includes the model parameters of the final successful Stop FC-ERP model. Extended Data Figure 3-5 shows the results of an
alternative, optimized successful Stop FC-ERP model with distal drive first instead of proximal drive first, which did not fit the empirical data. Extended Data Figure 3-6 displays unsmoothed
model dipoles for the successful and failed Stop FC-ERP. See Extended Data Figure 3-7 and the Results section for a demonstration and explanation of how HNN models predict the same
mechanistic differences between stopping conditions if the FC-ERP is generated in two source columns instead of one.

FC-ERP was to start with the model fit to the successful Stop
FC-ERP and conduct algorithmic optimization of a targeted sub-
set of parameters to produce a close representation of the failed
Stop FC-ERP (see Materials and Methods). Once more, we opti-
mized parameters associated with the timing, variance, and
synaptic weights of exogenous proximal and distal drives (see
previous section). However, for the Proximal 2 drive, only the
timing and variance of the inputs were optimized, with synaptic
weights held constant to specifically test the hypothesis that the
effective strength of this input does not need to change to account
for differences in P3 latency.

Consistent with race model-based predictions of a later but
not weaker latent Stop process in failed Stops, in the optimized
failed Stop model, the onset of the Proximal 2 drive was later
and the strength of the drive did not need to be adjusted.
Specifically, the best fit model (RMSE = 0.44; Fig. 3B) predicted
a mean onset time of 325 ms for the Proximal 2 drive, approxi-
mately 19 ms later than in successful Stops (Table 1).

While the timing of the Proximal 2 drive was the target of our
hypothesis testing with this model, we note that synaptic weight
changes occurred in the earlier Proximal 1 and Distal drives to
account for differences across conditions in the earlier P2 and
N2 peaks. The larger P2 amplitude in failed Stops emerged
from an earlier and stronger (Layer 5 pyramidal weights
increased, basket weights decreased) Proximal 1 drive.
Although no significant differences in N2 amplitude were
observed on average in our data, the failed Stop model predicted
both a later and weaker (Layer 5 AMPA and NMDA weight
reductions) Distal drive during failed Stop trials. These changes
were necessary to compensate for differences in the earlier
Proximal 1 drive underlying the P2 deflection, which in our sim-
ulations generated a different network state at the time of the N2
across conditions. Of note, the patterns of layer-specific spiking
activity were similar across the successful Stop and failed Stop
models, with the notable exception of more bursty spiking activ-
ity early in the trial in the Layer 5 pyramidal neurons in the failed
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Table 1. HNN model parameters for the failed Stop FC-ERP model and percentage changes from the successful Stop model parameters after optimization

Failed Stop model

% change from successful Stop model

Thalamocortical Corticocortical Re-emergent thalamocortical  Thalamocortical Corticocortical Re-emergent thalamocortical

Parameter (Proximal 1) (Distal) (Proximal 2) (Proximal 1) (Distal) (Proximal 2)
Input time 105.10 205.08 325.29 —9.90 ms +14.59 ms +19.64 ms
SD 15.65 34 50 +0.53 ms +8.19 ms —3.10 ms
L2/3 Pyramidal AMPA 0.01525 0.000007 1.43 0% 0% 0%

NMDA 0 0.004317 0.25 0% 0% 0%
L2/3 Basket AMPA 0.08831 0.006562 0.000003 0% 0% 0%

NMDA 0 0.19482 0.05357 (prev. 0) 0% 0%
L5 Pyramidal AMPA 0.07 0.05 0.684013 +250% —65% 0%

NMDA  0.03 0.05 4 +275% —38% 0%
L5 Basket AMPA 0.00002 - 0.008958 —96% - 0%

NMDA 0.05 - 0.25 —50% - 0%

Stop model (Fig. 3Biii). One interpretation of this early increase
in spiking is that it may increase output from the frontal cortex to
subcortical and motor areas, ultimately erroneously facilitating
movement in failed Stop trials.

Alternative models of P3 onset mechanisms could not
simulate differences in P3 latency across Stop accuracy
conditions

To avoid model bias stemming from our main hypothesis about
the cause of the P3 onset latency difference across conditions,
we also simulated two alternative hypotheses of mechanisms
that could potentially account for the later P3 onset in failed
Stops. Both alternatives tested whether decreases in the effective
strength of re-emergent thalamocortical (Proximal 2) inputs
could account for the later P3 onset, as opposed to a later onset
time.

In one alternative, we decreased the effective strength of the
Proximal 2 input by reducing the number of spikes representing
this drive from two to one to simulate a weaker underlying Stop
process in failed Stop trials. We then optimized the conductance
strength (i.e., synaptic weights) and timing parameters of all
input drives—except for the timing of Proximal 2—to fit the
recorded ERP (see Materials and Methods). The best fit wave-
form simulated with this alternative mechanism produced a
worse fit to the Stop-Signal-locked ERP than before, such that
the amplitude of the P3 was too small and the onset of the P3
too early in failed Stops (Fig. 4Aiii, boxes, compare with
Fig. 3Biii). This was due to decreased proximal drive and an over-
all decrease in L5 pyramidal neuron firing (RMSE =0.77; com-
pare spike histograms in Figs. 4Aii and 3Bii).

In the second alternative, rather than assuming the effective
strength of the Proximal 2 input was weaker in the failed Stop
model, we tested if a change in the conductance strength of
this drive (in either direction) instead of its timing could also
fit the data. More specifically, as in the first alternative, we opti-
mized the conductance strength (i.e., synaptic weights) and tim-
ing parameters of all input drives except for the timing of
Proximal 2, albeit in this case without reducing the number
of drive spikes. Though the best fit model recapitulated some
of the features of the empirical waveform (especially waveform
components preceding P3), it could not fit all of the waveform
characteristics as well as before (compare features highlighted
with boxes in Figs. 4Biii, 3Biii). First, the N2 deflection was later
and larger in magnitude than the data, due to a later shift in the
Distal drive, which did not overlap with the preceding thalamo-
cortical Proximal 1 drive. This feature was present on nearly all

trials (see the gray lines in Fig. 4Biii for individual trial simula-
tions) as opposed to only some trials in the previous timing-
change model (Fig. 3Biii). Second, the late tail of the ERP
(>400 ms) returned too quickly to baseline, due to a reduction
in Layer 5 pyramidal neuron spiking (RMSE =0.69; compare
spike histograms in Figs. 3Bii, 4Bii).

Alternative models of P2 and N2 dynamics

We so far have focused on the simulated mechanisms predicted
to underlie the difference in the timing of P3 onset in failed and
successful Stop trials. However, there are also differences in ear-
lier FC-ERP peaks, such that in failed Stops the P2 deflection is
larger and the N2 deflection appears smaller (although this
peak amplitude difference is not statistically significant in our
data sample; Fig. 2C). Our best-fitting model (Fig. 3B) also makes
specific predictions about the changes to incoming drives that
simulate these earlier differences. Specifically, the synaptic
weights of the thalamocortical (Proximal 1) and corticocortical
(Distal 1) drive producing the P2 and N2 became stronger and
weaker in the failed Stop model, respectively. The weaker
Distal drive compensated for a stronger Proximal 1 drive to
maintain a nearly constant, albeit slightly smaller, N2 magnitude.

Given that the model predictions about the generation of
these early P2 and N2 changes were a consequence of automated
optimization, rather than a systematic exploration of specific
hypotheses, we examined possible alternative mechanisms of
P2 and N2 that could involve changes to Proximal 1 drive
(generating P2) while requiring minimal changes to Distal drive
(generating N2). Within HNN’s framework, a reduced efficacy in
distal drive and consequently smaller-amplitude N2 could arise
from two primary mechanisms: (1) a reduction in distal depolar-
izing currents, such as due to increased synaptic weights of the
Distal drive onto pyramidal cells or (2) hyperpolarization of
the pyramidal cell soma, resulting from inhibition produced in
response to a preceding Proximal drive. Both of these mecha-
nisms reduce downward current flow in apical dendrites during
Distal drive. Our timing-change model of failed Stops (Fig. 3B)
predicts that the smaller N2 results from the former mechanism.
Here, we test whether the latter could produce this same condi-
tion difference as well.

First, we tested if the compensatory reduced efficacy of Distal
drive in the failed Stop model could also result from increased
pyramidal inhibition at the time of the N2 peak. An increase in
inhibition could emerge from changes in the preceding thalamo-
cortical (Proximal 1) dynamics (Pouille and Scanziani, 2001;
Kurotani et al., 2008), and specifically from an increase in the
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efficacy of the Proximal 1 drive onto the inhibitory cells that
would in turn increase somatic inhibition of pyramidal cells.
To test this, we reverted all the synaptic weights for the
Proximal 1 and Distal drives back to the successful Stop model
weights and then manually increased the synaptic conductance
weights of thalamocortical (Proximal 1) drive to L5 basket cells
by rounding up the Proximal 1-Layer 5 basket AMPA weight
parameter (from 0.000561 to 0.001, 79% increase) and doubling
the Proximal 1-Layer 5 basket NMDA weight parameter (0.1 to
0.2, 100% increase). This led to a flatter and smaller-amplitude
P2 deflection that was not consistent with the empirical
FC-ERP (RMSE=0.66; compare features highlighted with a
box in Fig. 5Aiii with similar features in Fig. 3Biii).

We then expanded this exploration by starting from the
increased Proximal 1 weights to the basket cells in Figure 5A
and ran automated optimization on the timing, variation, and
all of the synaptic weight parameters of the Proximal 1 drive.
The resulting model simulated a better fit to the empirical
FC-ERP (Fig. 5B), even though it did not fit the data quite as
well as our original failed Stop timing-change model (RMSE =
0.48 vs 0.44 in Fig. 3B), since the timing and amplitude of the
N2 peak were slightly misaligned. Compared to the best-fitting
failed stop model in Figures 3B and 5B, the mean timing of the

Proximal 1 drive is slightly later, the synaptic conductances for
Proximal 1 onto the inhibitory cells is stronger while the synaptic
conductance onto the pyramidal cells is the same, and the synap-
tic conductances for Distal drive to the excitatory is stronger
because they remained set at the successful Stop model strengths
(compare Table 1 with Extended Data Table 5-2). Such a small
difference in the fit of the two models in Figures 3B and 5B sug-
gests that the simulated mechanism in either model could under-
lie empirical condition differences in the early FC-ERP waveform
components (P2/N2). A key distinction in Proximal 1 dynamics
from the successful Stop model (Fig. 3A) in both failed Stop mod-
els (Figs. 3B, 5B) is the fact that this drive is stronger, generating
more Layer 5 (in Figs. 3Bii, 5Bii) and Layer 2/3 pyramidal cell
spiking (in Fig. 5Bii), which would lead to differences in the
strength of early signaling to downstream regions. Model param-
eters for all tested alternative models are listed in Extended Data
Tables 4-1, 4-2, 5-1, and 5-2.

Modeled mechanisms are conserved when simulated with two
sources

As discussed in the Materials and Methods section, HNN is
designed to simulate current dipole activity from a single source
within the brain. However, despite efforts to functionally localize
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Data Tables 5-1 and 5-2, respectively.

the FC-ERP to mPFC generators (see Materials and Methods),
this assumption cannot be met entirely when modeling scalp
electrode-level EEG activity. Therefore, we also examined the
possibility that the FC-ERP might be generated by two different
sources in the mPFC, whose activity sum together, rather than a
single source. We also examined if the predicted mechanistic
difference in successful versus failed Stop trials still holds with
the two-source model (Extended Data Fig. 3-7).

To accomplish this, we first artificially split the empirical
FC-ERP between the N2 and P3 deflection, assuming the earlier
and later parts of the waveform come from two different under-
lying sources. Then, beginning with the parameters used for the
successful Stop FC-ERP, we ran optimization on the parameters
accounting for the P2/N2 (i.e., Proximal 1 and Distal drive) and
P3 (i.e., Proximal 2 drive) deflections separately, fitting two
different models (neocortical sources) to the two parts of the
waveform. This yielded two models that accurately reproduced
the (1) P2 and N2 deflections and (2) the P3 deflection, respec-
tively. Further, when summed together, the output from the
two models reproduced the entire time course of the successful
Stop FC-ERP, suggesting that it is not necessary that these

individual waveforms all arise from the same underlying source
(Extended Data Fig. 3-7A-C).

To examine if the predicted mechanisms underlying
successful versus failed Stops still hold, we next optimized these
two models to the failed Stop FC-ERP, where the empirical
data were similarly artificially split into early and late compo-
nents. To be consistent with our prior hypotheses and simula-
tions, we allowed all parameters of the first column’s model—
which included the Proximal 1 and Distal drives—to vary dur-
ing optimization but only allowed the timing parameters in the
second model—which contained the Proximal 2 drive—to
vary. As before, we found that changes to timing and strength
(in the same direction) of the parameters associated with the
first proximal and Distal drive were needed to account for early
differences in the P2 and N2, but that a timing change alone in
the second proximal drive could account for the later P3 in
failed Stops. Again, when summed together the output from
the two models reproduced the entire time course of the failed
stop FC-ERP (Extended Data Fig. 3-7D-F). These results sug-
gest the predicted mechanisms of successful versus failed stop-
ping can hold even if the FC-ERP is generated by two sources.
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Summary of HNN model-predicted differences between
mechanisms of the successful and failed Stop FC-ERP and
implications for behavior

In this section so far, we have described the logic we followed to
optimize the successful and failed Stop FC-ERP models based on
a priori hypotheses and post hoc investigation of simulated alter-
native mechanisms. Our investigation resulted in a number of
specific model-based predictions on the mechanisms of
FC-ERP generation in each condition, as shown in Figure 3A
and Extended Data Figure 3-3 for successful Stops and Figures
3B and 5B, Table 1, and Extended Data Table 5-2 for failed
Stops. Here, we summarize these predictions (Fig. 6) and their
implications for SST behavior.

P2 deflection

Modeled thalamocortical (Proximal 1) drive to the pyramidal
neurons was earlier and stronger in failed compared with suc-
cessful Stops, driving more early spiking at the time of the P2.
Proximal 1 drive was stronger to Layer 5 pyramidal cells in
both failed Stop models shown in Figures 3B and 5B and in the
case of Figure 5B also to the Layer 2/3 pyramidal cells, producing
a larger positive current deflection in the model dipole, which
accounted for a higher-amplitude P2 in failed Stop trials. A pre-
diction of increased firing in mPFC neurons early following the
Stop-Signal in failed stops implies that regulation of this early
activity (which could be related to a prepotent Go response) is
critical for stopping success.

N2 deflection

Modeled corticocortical (Distal) drive producing the N2 in failed
Stops occurred later than in successful Stops in both models. In
the failed Stop model in Figure 3B, the Distal drive compensated
for a larger P2 through a decrease in drive to Layer 5 pyramidal
cells, which decreased spiking. In the failed Stop model in
Figure 5B, lingering somatic inhibition of Layer 5 pyramidal cells
from Proximal 1 drive counteracted the same synaptic Distal
drive weights as in successful Stops to produce a smaller N2
deflection and less spiking without a change in synaptic weights.
These models predict that an earlier Distal drive supports stop-
ping success and that successful Stops may also be facilitated
by increased L5 spiking in the N2 time frame (Fig. 3B; or, alter-
natively, that there is no difference in the strength of Distal drive
between successful and failed Stops; Fig. 5B).

P3 deflection

In both models of failed Stop trials, modeled re-emergent thala-
mocortical (Proximal 2) drive occurred on average later, but did
not differ in effective strength, compared with successful Stop tri-
als. This result implies that successful stopping relies upon tightly
timed firing of Layer 2/3 and Layer 5 pyramidal cells, which are
recruited earlier in successful Stops but do not otherwise differ in
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their overall firing rate compared with failed Stops. Thus, it
appears that while the spike rate near the earlier P2 is reduced
in successful Stops, potentially decreasing the likelihood of pre-
potent Go responses, the rate of spiking near the later P3 is not
a key contributor to the Stop process because the timing of the
spiking due to earlier drive is what differs in successful Stops.

Discussion

We used HNN’s biophysical model of the canonical neocortical
column under exogenous drive to model the cell and circuit
mechanisms underpinning the Stop-Signal-locked FC-ERP.
Motivated by prior studies on the mechanisms generating sen-
sory evoked responses (Jones et al, 2007, 2009; Kohl et al.,
2022), we demonstrated that a similar sequence of simulated
external thalamocortical and corticocortical drives can produce
the FC-ERP waveform during successful Stops. We then exam-
ined the mechanisms underlying FC-ERP differences in success-
ful versus failed Stop trials to draw neural mechanistic parallels to
the predictions of the behavioral horse-race model of the SST,
which implies that an earlier onset of an otherwise equivalent
Stop process would lead to a higher probability of stopping
success. We specifically tested the hypothesis that re-emergent
thalamocortical drives generating the P3 (whose onset is proposed
to index the Stop process, see Introduction) arrive earlier in
successful Stop trials, but are not effectively stronger than in failed
Stops. By also modeling several alternative hypotheses, our results
ultimately supported and provided a detailed circuit-level mech-
anistic explanation for this prediction about the P3, as well as a
novel interpretive framework for differences in the earlier
P2/N2 deflections that may contribute to the Stop process.

Novel predictions of drive sequence producing the FC-ERP are
consistent with prior studies and current theories of motor
inhibition
Our modeling results predicted that the FC-ERP during success-
ful stopping was generated by a sequence of thalamocortical
(Proximal 1 at ~115 ms), corticocortical (Distal 1 at ~190 ms),
and re-emergent thalamocortical (Proximal 2 at ~306 ms) drives,
which sequentially interacted with local network dynamics to
produce the P2, N2, and P3 peaks. In the model, the origins of
these drives to the neocortex are abstract and assumed to origi-
nate in the thalamus and higher-order cortex (or nonlemniscal
thalamus), representing “feedforward” and “feedback” drive
(Neymotin et al., 2020). This model-derived sequence is similar
to that shown for evoked responses in primary sensory areas
(Jones et al., 2007; Kohl et al., 2022), albeit at different latencies.
Several of our model-based predictions about mechanistic
underpinnings of the Stop-Signal-locked FC-ERP align with
emerging theories of motor inhibition as a two-stage process
(Schmidt and Berke, 2017; Diesburg and Wessel, 2021). Our

HNN predictions of circuit mechanisms regulating FC-ERP condition differences
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Diagram of HNN-predicted mechanistic differences between successful and failed Stop FC-ERPs.
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model predicts that tightly timed inputs at multiple timepoints
are associated with successful stopping. This is in line with the
race model insofar as there is a critical role for timing, but not
with assumptions of a unitary or strength-invariant (in the case
of P2) Stop process. However, the Pause-then-Cancel model of
motor inhibition assumes that successful action-stopping
requires both a rapid, nonselective Pause and a slower, selective
Cancel process. Increased and earlier neuronal activity associated
with the erroneous responses made in failed Stops in the early
post-Stop-Signal (i.e., P2) timeframe aligns with the suggestion
that the successful downregulation of action output by Pause
benefits the overall success of stopping in successful Stops. On
the other hand, the P3 exhibits several characteristics in line
with a possible signature of the Cancel process. Prior work has
shown that P3 amplitude is larger when associated with the
explicit instruction to stop an action as opposed to ignoring
the stimulus (Dutra et al., 2018; Tatz et al., 2021; Waller et al.,
2021). Our models predict the Stop-Signal P3 is generated by
thalamocortical inputs that arrive later but are not effectively
stronger in failed versus successful Stops, which would be in
line with a Cancel process that is deployed (albeit unsuccessfully
in failed Stops) in a top-down fashion in both contexts due to task
instructions to stop after the Stop-Signal.

The precise sources for the presumed thalamocortical and
corticocortical drives to the frontal cortex generating the human
FC-ERP are unknown. Based on cytoarchitectural principles
(Zikopoulos and Barbas, 2007; Xiao et al., 2009; Barbas et al,,
2013; Barbas, 2015) and tract-tracing research in nonhuman ani-
mal models, we here propose several potential thalamic and cor-
tical sources for these drives based on known patterns of laminar
innervation. This is intended to guide further work testing the
underpinnings of the FC-ERP by providing an illustration of
how these factors may guide hypothesis formation following
HNN investigations. As an example, we focus on data from the
mPFC, as previous work suggests that this area may contribute
to the FC-ERP following the Stop-Signal in humans (Huster
et al.,, 2011). The citations within this section are drawn from
investigations of the dysgranular midcingulate cortex, but we
expect laminar innervation in other regions of the mPFC to be
conserved, albeit from different source locations. Possible affer-
ent sources of the initial Proximal drive to dysgranular layers
(producing the P2) are thalamic core cells in the ventral anterior
(VA) nucleus of the thalamus (known to provide ascending
motor information; Vogt et al., 1987), the parietal association
cortices (Vogt and Pandya, 1987; Fillinger et al., 2017), or even
visual areas such as V2 or V1 (Fillinger et al., 2017). The Distal
drive to supragranular layers (producing the N2) may arise
from nonlemniscal thalamic matrix cells originating in the ante-
rodorsal (AM) or mediodorsal (MD) thalamic nuclei (Vogt et al.,
1987; whereby sensory and limbic information is integrated;
Barbas et al,, 2011), directly from limbic regions such as the
amygdala (as Barbas et al., 2011 demonstrated for OFC; poten-
tially carrying information about reward/salience) or from
higher-order cortices like the agranular insular cortex (AL
Vogt and Pandya, 1987; Fig. 7).

Efferent projections from mPFC to thalamic and/or cortical
targets are also important to consider, as these projections pro-
vide possibilities for re-emergent thalamocortical signaling
(which we assume produces the second Proximal drive generat-
ing the P3 in our models) and ultimately contribute to network
activity supporting the Stop process during successful action-
stopping. Projections from Layer 2/3 and 5 of the mPFC may tar-
get dorsal motor areas such as the pre-motor or pre-
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supplementary motor areas (Medalla et al., 2022), and Layer 5
and Layer 6 (which are not explicitly modeled in HNN currently)
neurons are known to project back to both higher- (i.e., MD/AM)
and lower-order (ie., VA) thalamic nuclei, respectively
(Domesick, 1969; Zikopoulos and Barbas, 2007), which could
contribute to re-emergent thalamocortical signaling (Fig. 7).

Model predictions help address debates on the role of N2 and
P3 mechanisms in motor inhibition

An ongoing debate about the relationships of FC-ERP features to
underlying inhibitory processes in the SST is whether the N2 or
P3 relates more directly to motor inhibition (Wessel and Aron,
2015; Huster et al,, 2020). It has long been proposed that the
P3 relates to inhibitory processes for the reasons discussed in
the Introduction. However, the timing of the N2 peak also corre-
lates with SSRT and occurs earlier in successful Stops (Anguera
and Gazzaley, 2012; Senderecka et al., 2012; Senderecka, 2016;
Huster et al., 2020). Our modeling reveals that it is likely the
sequential and interacting dynamics of several circuit mecha-
nisms generating Stop-Signal-locked ERP features that together
support inhibitory control processes in the SST. Our models pre-
dicted that the N2 was generated by Distal input to superficial
layers that generated downward currents followed by spiking
in L5 pyramidal cells. In failed Stop trials, this drive occurred
later and in one model (Fig. 3B vs Fig. 5B) was effectively weaker
than in successful Stop trials. This was because the N2’s timing
and amplitude were impacted by the network state induced by
initial thalamocortical (proximal) feedforward inputs, with lin-
gering excitatory and inhibitory currents in both layers after
the first proximal drive impacting the strength of the Distal drive.
Hence, the dynamics regulating the first proximal drive not only
play a crucial role in supporting action-stopping but also con-
tinue to impact the network state when the drive producing the
N2 arrives. This is also directly in line with work (discussed in
the Materials and Methods section) demonstrating the strong
augmentation in the mPFC that can arise from spike-timing-
dependent plasticity.

Setting aside the differences in strength in Distal drive between
the failed Stop models, a key prediction of both is the later arrival of
Distal input in failed Stops. In failed Stop trials, the re-emergent
thalamocortical drive generating the P3 was also later than in suc-
cessful Stops and may have failed to successfully support motor
inhibition by arriving too late. This implies, given that both the
N2 and P3 arrive earlier in successful Stops, that the precise signal-
ing patterns from the mPFC to output regions in support of suc-
cessful stopping may rely on the distal and proximal drives
producing these deflections (and associated spiking) being appro-
priately timed and spaced with respect to each other.

In summary, both the N2 and the P3 are generated by mech-
anisms that vary with the success of stopping and have the poten-
tial to impact stopping accuracy through communication with
downstream regions. These results also highlight that the N2
and P3 are underpinned by inputs from different origins to
different cortical layers. More work is needed to disentangle
the separate but parallel contributions of these mechanisms
and resultant network states to stopping. Because the precise pro-
cesses indexed by the N2 and P3 are still subject to debate, these
models and subsequent work may help the field generate new
ideas about the computations each feature reflects.

Relevance to error-related signals in inhibitory control tasks
Here, we focused on the Stop-Signal-locked FC-ERP, whose
defining characteristics include the negative-positive N2/P3
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Proposed connections to and from the mPFC. Proximal and distal connections to mPFC generators of the FC-ERP could come from thalamic core cells (in VA) and thalamic matrix cells

(likely from MD or AM) or from cortical sources. Ascending sensory information constituted by proximal drive could come from eulaminate cortices such as the parietal association regions or even
from the visual pathway. Feedback corticocortical information is more likely to come from even higher-order cortices such as Al. The FC-ERP could influence motor behavior by way of Layer 2/3
and 5 corticocortical to lower-order eulaminate cortices like the lateral pre-motor and pre-supplementary motor areas or via Layer 5 or Layer 6 signaling to the thalamic matrix or core, respec-

tively (note that Layer 6 is not explicitly modeled in HNN).

complex. This and several other inhibitory task contexts are
known to elicit similar frontocentral negative—positive com-
plexes including action errors (error-related negativity, ERN/
P3; Gehring et al., 1993), unexpected action outcomes (N2/P3;
Iwanaga and Nittono, 2010), and unexpected perceptual events
(N2b/P3; Courchesne et al., 1975). Though the multiscale mech-
anisms underlying these FC-ERPs are unknown, ICA-based EEG
analyses suggest that some of these signatures may come from the
same underlying functional sources (Wessel et al., 2012; Dutra
et al., 2018; see also Wessel and Aron, 2017). As such, our
HNN models of FC-ERPs may serve as a starting point for the
examination of mechanisms of error and novelty detection in
future studies.

Recent efforts have similarly used exogenous spike inputs to
basal and apical dendrites of isolated excitatory cells to simulate
mechanisms underlying the primate intracranial error-related
negativity (ERN) in supplementary eye fields during a saccade
countermanding task, with a specific focus on understanding
the relationship to theta power (Herrera et al., 2023). Modeling
results in that study suggested patterns of exogenous drive and
single neuron properties contribute to error-related LFP signals,
However, their reduced model was not able to fully articulate the
relationship to scalp EEG, which the authors concluded may sig-
nify “involvement of secondary cortical regions.” Based on our
HNN studies, we speculate that synaptic interactions among
the neocortical cells, including both excitatory and inhibitory
cells, are also important to consider in studying mechanisms of
the macroscale ERN and a promising target for modeling using
HNN.

Limitations and future directions

The predictions in this study rely on the assumptions of the
underlying HNN neocortical column model, which are based
on generalizable features of neocortical circuitry and not specific
to the potentially unique aspects of frontal cortical circuits. How
much the finer details of microcircuit structure across brain areas
contribute to macroscale EEG signals is unknown and should be
investigated in future work. Here, we made slight adjustments to
the HNN neocortical template model to account for unique-
nesses in frontal cortex connectivity (see Materials and
Methods), but have not taken into account other single-cell bio-
physical and morphological differences between frontal and sen-
sory cortices. Our results show that the FC-ERP shares similar
features with sensory evoked ERPs from granular primary audi-
tory and somatosensory areas (Jones et al., 2007; Kohl et al.,
2022) and suggest that time-locked ERPs across the brain are
constrained by conserved patterns of sequential external inputs
to layer-specific targets. HNN is designed to be a hypothesis test-
ing and development tool using a pretuned, large-scale neocorti-
cal model. We have focused on testing specific a priori
hypotheses in this study, with several alternatives examined,
but we cannot rule out that additional dynamics may be involved
in FC-ERP generation or action-stopping. Overall, our results
lead to many detailed predictions that provide targets for
follow-up testing with invasive recordings (e.g., thalamic deep
brain stimulation and recording, single-unit and laminar record-
ings in the mPFC; Sherman et al.,, 2016) or other imaging (e.g.,
high-field fMRI, laminar MEG; Bonaiuto et al., 2021) modalities.
HNN is developed with an open-source modular design so that if
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predictions are negated and/or new important circuit elements
become known, it can be iteratively expanded and compared
with data to account for new results. The HNN model tuned
for (pre)frontal cortex dynamics presented here provides a
unique starting point for further investigation of action-stopping
and other cognitive control processes reflected in FC-ERPs in
humans.
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