


Overvieww
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The sinusoid wave in field potential analysis
and the assumptions of “oscillations”

-
-

What happens when the assumptions break
down

Interpreting signatures that are not oscillatory
Practical demonstration
Tools for you moving forward
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A pit stop on the way [rom amplitude to phase



The sine wave in time-frequency analysis

A) Individual sine waves

10f ' ' ' ' ] In what ways have we utilized sine waves so
W/\/\/
—10} | | , , ] far?

10[\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\} - As bandpass filters

- At different frequencies for broadband TF

\/\/\/\/\/\/\/\/\/\/\ analysis (i.e., to make ERSPs)
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The sine wave in time-frequency analysis

A) EEG data

o W T g

B) No temporal weighting (Fourier transform)

\What assumptions might a kernel like this introduce into our results, interpretation?

- Presence of that specific frequency
- Length of the signal (number of cycles we include)

- Regularity (the underlying signal is a sine wave)



The sine wave in time-frequency analysis

A) EEG data

What assumptions might a kernel like B
Introduce into our results, interpretation?

B) No temporal weighting (Fourier transform)

- Presence of that specific frequency
\/\WN\AN\/\A/\/\/\/\/\/\/\/\ - Use kernels at multiple frequencies

C) Strong temporal weighting - Length of the signal (number of cycles we
% include)
D) Boxcar temporal weighting - Use a windowed kernel. like £
\/\/\/\/\ - Regularity (the underlying signal is a sine

wave)
E) Gaussian temporal weightinw




The sine wave in time-frequency analysis

A) EEG data

What assumptions might a kernel like B
Introduce into our results, interpretation?

B) No temporal weighting (Fourier transform)

- Presence of that specific frequency
\/\WN\AN\/\A/\/\/\/\/\/\/\/\ - Use kernels at multiple frequencies

C) Strong temporal weighting . Length of the Signal (nUmber of CYCIES we
% include) ***
D) Boxcar temporal weighting \/\/\M - Use a windowed kernel, like £

E) Gaussian temporal weightinw




What happens if a signal is not oscillatory?

Non-oscillatory: the underlying signal in the data is not angoing, or does not exhibit
sinusoidal properties (i.e., incomplete cycles)
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Jones (2016) — “When brain rhythms aren’t rhythmic”



What happens if a signal is not oscillatory?

Some modeled waves that all produce beta-range amplitude when analyzed using complex Morlet
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Current Opinion in Neurobiology

If we'retising wavelets, we can tell how long the beta event lasts. So why is this a problem?



What happens if a signal is not oscillatory?
Recall ERP logic. ..

ERP logic does not apply to measures of amplitude because a signal cannot have negative amplitude.
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What happens if a signal is not oscillatory?

Irregular signals with sharp phase shifts can lead to spurious amplitude measurements.
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Why does it matter?

For a quick, epoch-wide FFT (i.e., to get a spectrogram), it might not matter.

It does matter when interpreting the length of effects, linking signals to behavior, and considering mechanisms!

Using beta as an example:

Movement

Right STN (0-1)° F (H2)

[Figure from al., 2005]

Stopping
A) ERSP (successful - failed stop)
35
N2
"
£
kTop

500
Time (ms)

[Figure from Wessel et al., 2016]



Movement

a Topographical distribution of B-bursts following GO-signals
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Why does it matter?

In addition, understanding characteristics of neural signals at the single trial level
allows us to do some interesting things. ..

Including linking field potentials to mechanisms.
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[Figure from Sherman et al., 2016]



Some non-oscillatory signals to be aware of

Beta bursts — Shin et al., 2017 (ELife).

- Appear to reflect inhibited information-processing in neocortex during movement, perception.

Alpha bursts — Sherman et al., 2016 (PNAS).

Currently unclear how alpha bursts can be functionally differentiated from beta.

Sleep spindles — Schabus et al., 2004 (Sleep)

- Appear to have an important role in memory consolidation

Gamma bursts — Lundqvist et al., 2016 (Neuron). and clinical indicators!
Prefrontal gamma bursts increase with working memory load. /
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An interim summary

Not all brain signals are oscillatory. Sine-wave based analysis methods don’t account for this, and it
becomes a problem especially when

- Averaging jittered, transient amplitude measurements.

- Dealing with signals that have sharp phase transitions.
Understanding non-oscillatory signals Is important because

- They may better represent the nature of the cognitive process.
- They are likely more predictive of behavior.

- They allow you to make closer predictions about mechanisms.

Now, let’s get into the practical details of extracting these signals...



signals?

Today, I'll show you an example of how
to use sinusoid-based methods that you
already know to extract transient, burst-
like signals.

1. Convert time-domain data to TF
data (weighting time resolution)

2. Extract the power at frequencies of
Interest

3. Apply an amplitude cutoff
4. Statistically analyze your bursts

A

Raw LFP signal
analogue filtered
from 3 Hz to 37 Hz

v

LFP signal
filtered arround
beta peak

|

Rectified/ smoothed
LFP signal

How do we analyze non-oscillatory

' - ' : :
1 : e 2 ' a1 75t percentile ' E
AN :A; of signal amplitude |

o NE M

[Tinkhauser et al., 2017, Brai
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Houw do we analyze non-oscillatory signals?

Average RT for trials with and without

bursts in sensorimotor cortex
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Practical demonstration in MATI.AB



This view of neural signatures

represents a departure from canonical
approaches of studying neural signals,
especially EEG. As such, best

approaches and tools are still being
developed.

Here are some examples of such tools
to get you started. ©

Additional tools Jor analyzing and
understanding non-oscillatory signatures
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Modelling non-oscillatory signatures

Fieldtrip’s ft_dipolesimulation: “simulates channel-level time-series data that consists
of the the spatial distribution of the the field or potential of one or multiple dipoles.”

- Specify levels of background white noise.

FieldTrip

T CE—
-

- Set specs of meaningful neural signal to include. %
Cons: - -
- No GUI

- Requires you to know what you're doing

https://www.fieldtriptoolbox.org/reference/ft_dipolesimulation/



Modelling non-oscillatory signatures

Human Neocortical Neurosolver: model e —l— =
source-level, biophysically-realistic #ne¢IvQ=L — o
EEG/MEG data (ERPs and TF) using a . 7T —
simulated cortical circuit model. °
Pros: simple GUI, Cons: not a MATLAB =1
package, source-level simulations
https://hnn.brown.edu/

X Corractione || % Thaarme | Tratfc £ Veuaization




(relling granular data from non-osc. signatures

Bycycle Python package: quantify neural
features in the time-domain, cycle-by-

F Time (s)
cycle. f
, | Amplitude = ( |+ )/2
- Doesn’t use narrow-band filters or Period PR
methods with sinusoidal basis. Rise-decay

A symmetry LAl )
- Cole and Voytek, 2019 (J Neurophys) Peakough
https://github.com/bycycle- ki

tools/bycycle




Ouestions?



